Browse:  #  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z 

No-arbitrage bounds

No-arbitrage bounds Definition

In financial mathematics, No-arbitrage bounds are mathematical relationships specifying simple limits on derivative prices. Normally, these are found by simple arguments based on the payouts of the security in question, without specifying any sort of Distribution on any of the asset returns involved.


Lack of arbitrage explains some rather obvious questions in option pricing, such that the value of a call option will never rise above the underlying stock price itself. However, the most frequent nontrivial example of no-arbitrage bounds is put-call parity for option prices.








Browse:  #  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z